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ABSTRACT
Many modern approaches to image reconstruction are based
on learning a regularizer that implicitly encodes a prior over
the space of images. For large-scale images common in
imaging domains like remote sensing, medical imaging, as-
tronomy, and others, learning the entire image prior requires
an often-impractical amount of training data. This work de-
scribes a deep image patch-based regularization approach
that can be incorporated into a variety of modern algorithms.
Learning a regularizer amounts to learning the a prior for
image patches, greatly reducing the dimension of the space to
be learned and hence the sample complexity. Demonstrations
in a remote sensing application illustrates that learning patch-
based regularizers produces high-quality reconstructions and
even permits learning from a single ground-truth image.

Index Terms— Patch-based methods, deep learning, in-
verse problems, deblurring, remote sensing

1. INTRODUCTION

Linear image reconstruction is the process of estimating an
image x from observed noisy projections of the form

y = Ax+ ε,

where A is a linear model of a measurement system and ε
is a noise vector. Example settings include deblurring in re-
mote sensing, k-space measurements in MRI, radar returns,
missing pixels, low-resolution measurements, and more. Es-
timating x from y with knowledge of A, which may be un-
derdetermined or ill-posed, has been well-studied in the com-
putational imaging literature. A standard approach is to find
an image x̂ ∈ Rp which satisfies

x̂ = argmin
x

1

2
||Ax− y||22 + r(x), (1)

where r(·) is a regularizer that encourages the solution x̂ to
have particular desirable properties.
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Classical reconstruction methods specify a choice of regu-
larizer to promote smoothness, sparsity in some dictionary or
basis, or other geometric properties. However, an emerging
body of research explores the idea that training data can be
used to learn a regularizer, either explicitly or implicitly, us-
ing neural networks. Such learned regularizers can be “decou-
pled”, so they are learned in a way which is agnostic to the for-
ward operator [1, 2], or may be learned “end-to-end”, where
an existing optimization algorithm is unrolled and trained for
specific reconstruction tasks [3, 4].

Most past work in this regime has focused on learning
a regularizer for whole images, capturing global image ge-
ometry. Essentially, this approach learns the natural image
manifold that we expect x to lie upon [5]. This framework is
effective when the images of interest are small, as in standard
benchmark training sets. However, for larger images common
in remote sensing, medical imaging, astronomy, microscopy,
and other applications, we face two key challenges: (1) the
underlying image manifold is much higher dimensional be-
cause the images themselves lie in a higher dimensional space
with more complex geometry, and (2) there is a paucity of
large-scale training image datasets.

To address these challenges, this paper proposes learning
a patch-based regularizer. Exploiting the geometry of image
patches is leveraged in a myriad of image processing tools, in-
cluding nonlocal means [6], dictionary learning [7, 8], BM3D
[9, 10], Gaussian mixture model priors [11, 12], and more.
However, state-of-the-art methods for neural network-based
image reconstruction do not leverage patch geometry. This
work systematically explores patch-based reconstruction and
its impact on sample complexity, i.e., how reconstruction er-
ror scales with the number of training images.

2. PREVIOUS WORK

Much of the past work in learned regularizers for image re-
construction has origins in optimization theory. Specifically,
imagine we had a fixed regularizer r(·) and set x̂ to be the so-
lution to (1). A proximal gradient algorithm [13] starts with
an initial estimate x(0) and step size η > 0 and then computes
for k = 0, 1, 2, . . .

x(k) = x(k) + ηA>(y −Ax(k)) (2)

x(k+1) = argmin
x

1

2
‖x(k) − x‖22 + r(x). (3)
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Fig. 1. Visual representation of patchwise regularization using a deep network. The network separately processes N patches of dimension
p×p×3, whereN is the number of (potentially overlapping) patches of size p×p that are used to represent the original image. By operating
on small p× p patches, the regularizer learns from N × nsamples unique patches during training.

Essentially, this algorithm alternates between (2), a gradient
descent step that pushes the current estimate towards a bet-
ter fit to the data, and (3), a proximal operator that finds an
estimate in the proximity of x(k) that is well-regularized (as
measured by r(·)). This second step is often thought of as
a denoising step. One approach to learning to solve inverse
problems is to implicitly learn r(·) by explicitly learning a
proximal operator mapping (3) [14, 15].

In a similar vein, Plug-and-play priors [16] and Regular-
ization by Denoising [2] demonstrate that many reconstruc-
tion problems can be solved by using denoisers as regular-
ization terms in ADMM, fixed-point, or steepest descent al-
gorithms. These regularizers, in particular, may be learned
offline, permitting deep learning methods like TNRD [17],
DnCNN [18], or FFDNet [19] to be used.

These and related methods have been explored primarily
in the context of small images for which we have large col-
lections of training images. For instance, [18] trains on 3,000
50 × 50 images. To train for larger image sizes (224 × 224)
and more complex scenes like ImageNet, a state-of-the-art su-
perresolution method [20] requires an even larger dataset of
350,000 images. Such large datasets are not available in many
application domains. For instance, [21] trains on 52,850 2-D
slices of MRI acquisitions from 350 patients, and [22] trains
on 4,096 images in a hyperspectral superresolution setting.

3. DEEP PATCH-BASED LEARNING

The aforementioned learned approaches to image reconstruc-
tion require learning a regularization term that can correspond
to a prior over the space of images of interest. Unfortunately,
learning such priors is plagued by the curse of dimensional-
ity: even for moderately-sized images the number of samples
required to learn a full prior is unreasonable.

In contrast, our focus is on learning a prior for image
patches – small blocks of pixels, such as 8 × 8 or 16 × 16.
Some prior work has explored leveraging patch geometry. For
instance, [23, 24] both train entirely on patches but on special
forward models where the operator A can be decomposed
across patches; they split the corrupted image into multiple

patches and reconstruct those independently. In contrast, this
paper describes a framework in which A may be an global
operator, such as k-space measurements in MRI or radar re-
turns, but in which the regularizer may be decomposed across
patches. This is similar in spirit to the patch-based decom-
position of regularizers in [25], but while that prior work as-
sumed patches lie along a low-dimensional subspace, here we
learn the patch geometry from training images using a neural
network.

We utilize a flexible procedure in which a deep regular-
izer is applied in a patchwise manner. Specifically, the reg-
ularizer operates by dividing the input image into overlap-
ping patches, subtracting the mean from each patch (a stan-
dard preprocessing technique in patch-based methods [26]),
and passing each mean-subtracted patch through the learned
component (e.g., neural network). The means from the origi-
nal patches are added to the outputs of the patches, which are
then recombined. Figure 1 is a graphical representation of the
described procedure. Mathematically, this can be represented
by the following expression:

R(x) = P−1
({
R̃
(

P(x, i)− P(x, i)
)
+ P(x, i)

}n

i=0

)
.

(4)
Here, P(·, i) is a patch extraction operator which outputs the
ith patch of an image, and P−1(·) recombines a set of poten-
tially overlapping patches, where overlapping pixels are aver-
aged. In this case, R̃(·) is a deep network operating on each
patch individually. P(x, i) denotes the average of an individ-
ual patch.

In the above regularizer, all processing steps other than
patch extraction and aggregation are local to a single patch,
and hence are trivially parallizable. The ability to explicitly
distribute regularization permits larger minibatch sizes in it-
erative methods with learned components. Several state-of-
the-art learnable iterative methods are trained using minibatch
sizes of 1 or 2 because of memory constraints [23, 27, 4, 21],
which is much smaller than those used by non-iterative ap-
proaches [28, 20].

Patch-based regularizers may be incorporated into and
trained as part of an end-to-end image reconstruction tech-
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(a) Original

(b) Original Subimage (c) 8x8 NN (d) 16x16 NN (e) 64x64 NN (f) Full-Image NN

(g) Blurred Subimage (h) 8x8 RED (i) 16x16 RED (j) 64x64 RED (k) Full-Image RED

Fig. 2. Zoomed-in visual comparison of reconstruction quality for a variety of regularization patch sizes for both the Neumann Network
(NN) and Regularization by Denoising (RED). Larger patch sizes result in visual artifacts and reduced PSNR. Sub-images are 100 × 100
pixels, representing a 50 m × 50 m area on the ground.

nique, e.g. [4], or may be trained alone for use in an iterative
reconstruction algorithm like [2]. The former case is straight-
forward, as a single whole-image network can be replaced
by the regularizer in Eq. 4. Training is simple, as gradients
can flow along the patch-combination and patch-extraction
operators. Training an offline patchwise regularizer typically
requires learning a denoising neural network, which is trained
using image patches instead of full images.

4. EXPERIMENTS

In this section, we illustrate the effects of learned patch-based
regularization on sample complexity, and follow these results
by demonstrating that systems with local regularization are
able to generalize well even when trained with a single image.

4.1. Training Data and Methods

In all experiments we train and test using subsets of the
SpaceNet dataset [29]. We use the AOI1 subset of images,
which consists of aerial 3-band imagery of a 2544 square
kilometer region of Rio de Janeiro captured by a WorldView-
2 satellite system. Training images have a resolution of 50
cm, and are 416x416 pixels in size. The forward model in
this case is a Gaussian blur with kernel size 9 × 9 and vari-
ance parameter σ2 = 2, where noise is added after blur with
standard deviation σ = 0.03.

Some fraction of the dataset contains images with missing
regions. We removed all such images by hand, and selected
the training set from the remaining images. All numerical
results shown below use a single held-out test set.

For illustration purposes, we use as reconstruction meth-
ods the Neumann Network (NN) [4] and Regularization by

Denoising (RED) [2]. The Neumann network is an end-to-
end trainable method which permits preconditioning and ar-
bitrary learned components. The Neumann network estimator
is of the form:

x̂NN =
n∑

i=0

(I − ηA>A−R(·))i
(
ηA>xinit

)
where R(·) is a learned regularizer and η a scaling constant.
The Neumann network is attractive in the patch-based set-
ting because of its guarantees for data drawn from a union-of-
subspaces model, which has been demonstrated to be a good
model for small image patches [30, 31].

RED, by contrast, leverages a pretrained learned denoiser,
which we denote R̂(·). The RED estimator minimizes a par-
ticular energy functional:

x̂RED = argmin
x

||y −Ax||22 +
λ

2
x>(x− R̂(x)) (5)

In our experiments, we use ADMM to minimize (5).
We use FFDNet [19] as a denoiser for RED. FFDNet is

a denoising convolutional network that is designed to work
with spatially-variable noise levels. We train the FFDNet by
learning to denoise image patches, whose size depends on the
experiment. At test time, the whole image is regularized by
combining patchwise estimates in the manner illustrated by
Fig. 1. The learned element of the Neumann network is a two-
block residual network with identical structure to the residual
learned component used in [21]. The original Neumann net-
work [4] utilized a network based on a residual autoencoder
that resembled the U-Net [28], but memory restrictions for the
full-image regularizers necessitated a more lightweight net-
work. We chose the learned component of [21] because of
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its empirical performance as well as prior use in an unrolled
iterative algorithm. The learned component of the Neumann
network is trained in an end-to-end fashion, with the regular-
izer as proposed in the original work replaced with the scheme
illustrated in Figure 1.s

We use both methods to demonstrate that the improve-
ments seen below are not specific to end-to-end or pre-trained
iterative methods, but instead a result of the improved sample
complexity permitted by regularizing locally.

4.2. Sample Complexity

In this section, we explore our previous hypothesis that a deep
regularizer that operates on small patches will have better per-
formance in the small-sample case than a comparable regular-
izer that operates on larger patch sizes.

8× 8 16× 16 64× 64 Full Image

R
E

D

100 30.01± 1.14 29.46± 1.16 29.33± 1.07 29.32± 1.18
500 31.33± 1.22 30.19± 1.10 30.96± 1.27 29.51± 1.29
1000 33.47± 1.26 31.47± 1.26 31.12± 1.21 30.03± 1.32

N
N

100 32.64± 1.26 31.22± 1.35 28.88± 1.14 27.08± 1.00
500 32.87± 1.24 31.93± 1.46 31.09± 1.34 27.81± 1.01
1000 32.90± 1.25 32.20± 1.44 32.19± 1.44 29.85± 1.17

Table 1. PSNR (dB) comparison for deblurring across several train-
ing set sizes (i.e., number of training images) with different regular-
izer patch sizes. Results are the mean plus and minus the standard
deviation of PSNR over a test set of size 64.

In Table 1, the empirical results support out sample com-
plexity hypothesis. While both NN and RED enjoy higher
PSNR with increasing training set sizes, decreasing the size
of the patches that are input to the regularizer has a dramatic
effect on PSNR. For the Neumann network, shrinking the
patch size from 64× 64 to 8× 8 has comparable effect on
PSNR as a 10× increase in training set size. A qualitative,
visual comparison of detail in a test image reconstructed by
the networks trained on 1000 images is given in Figure 2.

4.3. Single-Image Training

We demonstrate that enforcing locality in a learned regular-
izer permits training on a single ground truth image while still
enjoying competitive reconstruction accuracy. In this exper-
iment, the training set consists only of a single clean image.
Training was performed with identical parameter settings as
prior experiments. The number of training steps was 1000.
The held-out test set was the same as previous experiments.

Table 2 contains test PSNR results. The results shown
here are for a single instance of this experiment: while any
training image may be chosen, we found empirically it is ben-
eficial to train on an image with a variety of visual features.
Fig. 3 contains some sample reconstructions of an image from
the test set. We find using patchwise regularizers produces
high-quality reconstructions, while regularizers operating on
the full image result in noisy artifacts that are likely a result
of overfitting to the single training image.

8× 8 Full Image
RED 26.60± 1.54 21.02± 0.57
NN 31.90± 1.42 18.34± 1.31

Table 2. PSNR (dB) comparison for single-training-image recon-
struction. When there is just one training image, local regularization
does not overfit, unlike full-image regularization. Results are the
mean plus and minus the standard deviation over test set of size 64.

(a) Original (b) 8x8 NN (c) 8x8 RED
PSNR: 31.33 PSNR: 26.80

(d) Blurred Input (e) Full-Image NN (f) Full-Image RED
PSNR: 17.81 PSNR: 20.87

Fig. 3. Single-image Training Reconstruction. Local regularization
enables competitive reconstruction quality with a single training im-
age, while unrestricted training on a single image results in a poor,
noisy reconstruction. The inverse problem is Gaussian deblurring
with kernel size 9× 9, variance σ2 = 2, and noise level 0.03.

5. CONCLUSION

In this paper, we propose a deep patchwise regularizer for use
in iterative solutions to inverse problems. By regularizing in
a patchwise manner, fewer samples are needed to learn the
lower-dimensional prior distribution over the space of image
patches, which is demonstrated through experiment. Restrict-
ing a regularizer to operate in a patchwise manner sacrifices
the ability to learn long-range correlations, but empirically
improves performance in the small-sample setting. Patch-
wise regularizers are not limited to end-to-end-trained meth-
ods or pretrained regularizers, and in both cases permit learn-
ing from even a single training image.
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